

Planning Smart Infrastructure to Power Mobility's Future

Mike Usen, Senior Transportation and Environmental Planner, DKS

Shaping a smarter transportation experience. $^{\text{\tiny TM}}$

Introduction

- 1. What's new in Electric Vehicles (EVs)?
- 2. What's so smart about EVs?
- 3. What is EV charging infrastructure?
- 4. How can EV charging integrate into smart city infrastructure?

Transit: Electric Trollybuses

Transit: Metro's new battery bus fleet

Light Duty Electric Vehicles

Table 1: Currently (2018) Available Electric Vehicles

Brand	Model	Price	Battery (kWh)	Range (miles)
BMW	i3	\$43,450	33	114
CHEVROLET	Bolt EV	\$37,495	60	238
FIAT	500e	\$31,800	24	84
FORD	Focus Electric	\$29,120	33.5	115
HONDA	Clarity Electric	\$34,290	25.5	89
HYUNDAI	loniq Electric	\$29,500	28	125
KIA	Soul EV	\$32,250	30	111
MERCEDES-BENZ	B250e*	\$39,900	36	87
MITSUBISHI	i-MiEV*	\$22,995	16	62
NISSAN	Leaf	\$29,990	40	150
NISSAN	Leaf (1st Gen)	\$30,680	30	107
RENAULT	Zoe	\$31,000	41	186
SMART	Fortwo ED	\$23,800	17.6	100
TESLA	Model 3	\$35,000	55	220
TESLA	Model 3 (Long Range)	\$49,000	75	310
TESLA	Model S 100D	\$94,000	100	335
TESLA	Model S 75*	\$69,500	75	249
TESLA	Model S 75D	\$74,500	75	259
TESLA	Model S P100D	\$135,000	100	315
TESLA	Model X 100D	\$96,000	100	295
TESLA	Model X 75D	\$79,500	75	237
TESLA	Model X P100D	\$140,000	100	289
VOLKSWAGEN	e-Golf	\$30,495	35.8	125
VOLKSWAGEN	e-Up!	\$34,500	18.7	99

Source: EV Rater (https://evrater.com/evs#ev-list) Accessed 1/25/18

Medium/Heavy Duty Electric Vehicles

XL Hybrids Ford F-150 upfit

Thomas Built C2 Jouley

Source: Puget Sound Clear Air Agency

Workhorse E-GEN step van

Proterra EV bus

Future Electric Trucks or Toys

Bollinger B1

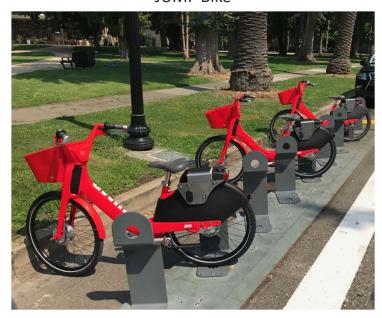
Workhorse W-15

Rivian R1T

Electric scooter share

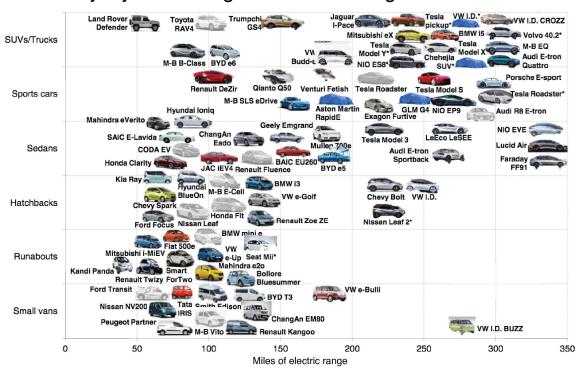
Lime-S electric scooters

Bird electric scooters

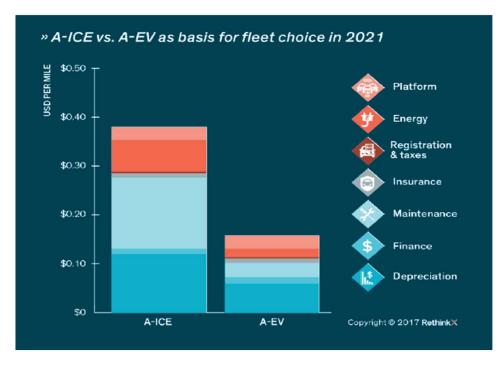


Electric Bikeshare

Lime electric bikes


JUMP Bike

EV Range and Buyer Choice


Models by style and range available through 2020

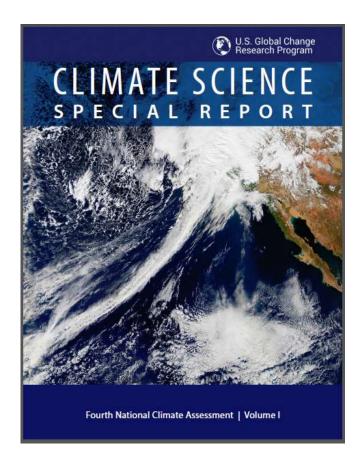
Needs and Benefits: Economics

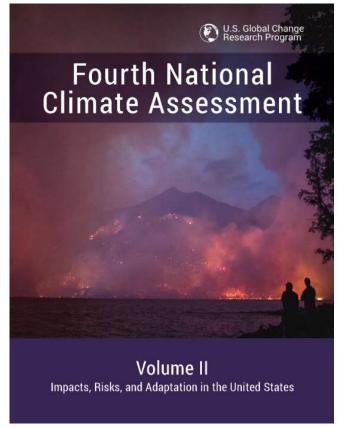
Providing infrastructure to charge Electric Vehicles is the first step in preparing for smart (ACES) mobility:

- Autonomous
- Connected
- Electric
- Shared

Navya's Autonom driverless shuttle

Providing infrastructure to charge Electric Vehicles is the first step in preparing for smart (ACES) mobility:


- Autonomous
- Connected
- Electric
- Shared



NEXT's futuristic autonomous electric pods

Providing zero-emissions mobility mitigates climate change

Along with cutting GHG, switching from traditional combustion engines to electric vehicle in urban areas will:

- Reduce volatile organic compounds (VOC) and carbon Monoxide (CO) by 100 percent;
- Reduce sulfur oxide (Soc)by 75 percent;
- Reduce nitrous oxide (Nox) by 69 percent, and;
- Save millions of gallons of gas and keep money in the local economy.

EV Infrastructure Types

Up to 2 miles, 30 minutes

Level 2 Charging

Up to 10 miles, 30 minutes

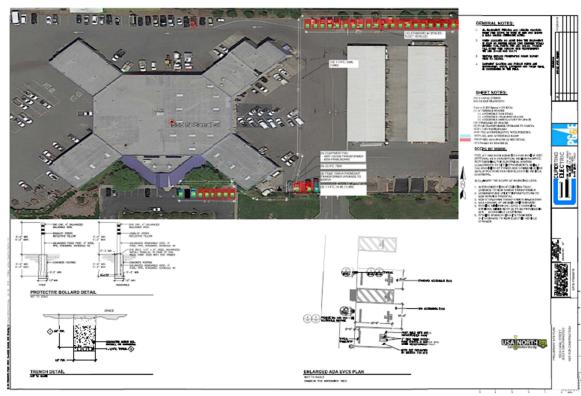
DC Fast Charging

Up to 75 miles, 30 minutes

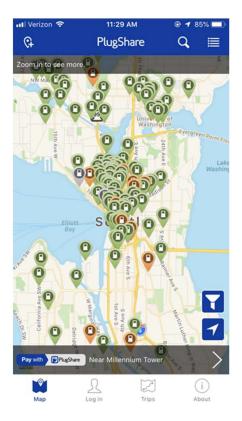
Charging Categories: Residential

Photo credit: Leviton http://blog.leviton.com/next-step-electric-vehicle-charging-stations

 $Photo\ credit:\ http://www.plugincars.com/planning-electric-vehicle-ownership-accessible-apartment-dwellers-129340.html$

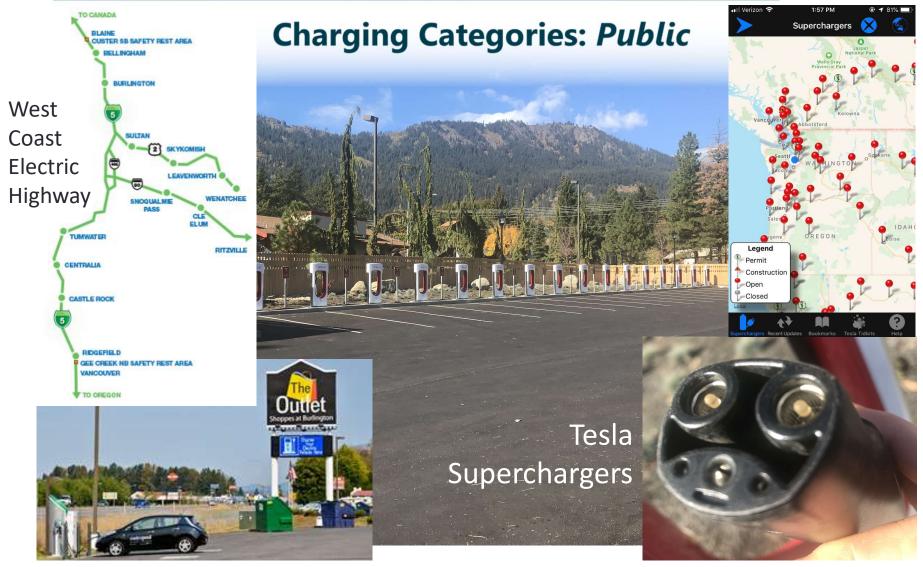

Charging Categories: Workplace

Charging Categories: Fleet



Charging Categories: *Public*

Destination

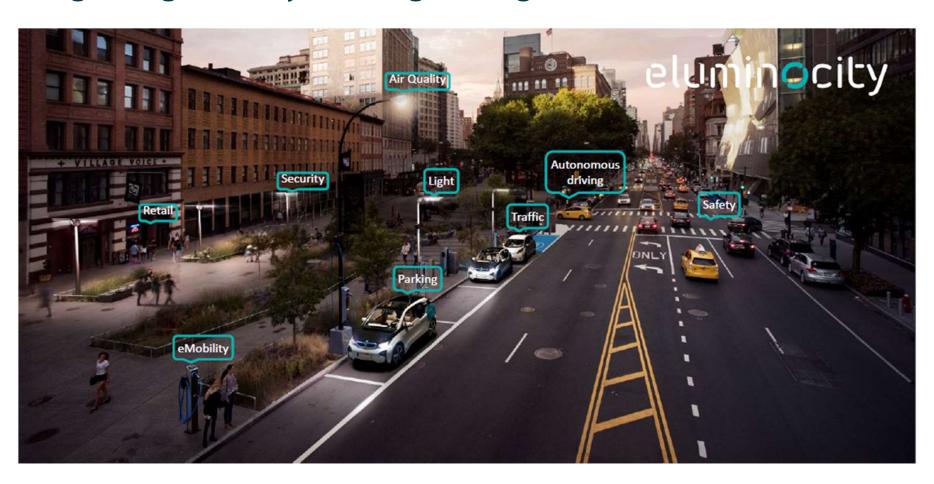


Right-of-way

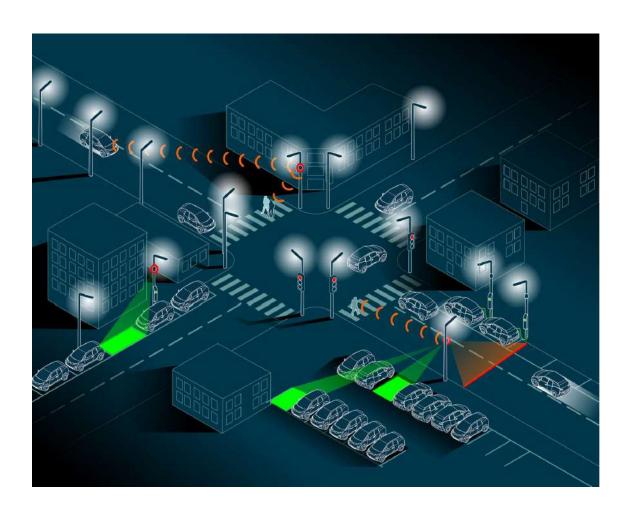
DKS

3. What is EV charging infrastructure?

Charging Categories: *Shared Mobility*


4. EV charging infrastructure & smart cities

4. EV charging infrastructure & smart cities


Digitizing cities by creating intelligent infrastructure hubs

4. EV charging infrastructure & smart cities

Intelligent street lights

eluminocity

- Adaptive lighting
- Vehicle charging
- Parking management
- Traffic management
- Pedestrian avoidance
- Environmental monitoring
- Spotter
- Security alerts
- Preventative maintenance
- Data analysis/processing
- Resilience

5. Conclusions

- 1. Replacing engines with Zero-emissions motors mitigates climate change.
- 2. Providing infrastructure to charge EVs is the first step in preparing for smart (ACES) mobility.
- 3. We need to plan charging for: residential, workplace, fleet, public, & shared mobility applications
- 4. In the future, electricity will power future mobility of every type.
- 5. Intelligent infrastructure integrates street lights with EV charging, parking & traffic management, safety systems, environmental monitoring and more.

DKS Offices

www.dksassociates.com

719 Second Ave., Suite 1250 Seattle, WA 98104 206.382.9800

720 SW Washington St., Suite 500 Portland, OR 97205 503.243.3500

117 Commercial St. NE Salem, OR 97301 503.391.8773

1970 Broadway, Suite 740 Oakland, CA 94612 510.763.2061

8950 Cal Center Dr., Suite 340 Sacramento, CA 95826 916.638.2000

2401 E. Katella Ave., Suite 425 Anaheim, CA 92806 657.284.2620

7500 Rialto Blvd. Building 1, Suite 250 Austin, TX 78735 512.329.2723

Mike Usen, AICP

T: 206.436.0557 | E: Mike.usen@dksassociates.com