
2022 ITS Washington Annual Conference

Trajectory Based Signal Performance Measures: What are they? And how can they help agencies improve performance and reduce emissions?

Gary Carlin, PE, PTP, Dir. Business Development

Our Mission: Enabling Intelligent Mobility

Providing Mission Critical Software for Mobility Intelligence

Intelligent Mobility Starts at the Intersection

Signal timing impacts everything from urban congestion to air pollution to safety

CONGESTION

10% of the travel time of an average trip is typically spent waiting at traffic signals*

*Source: INRIX U.S. Signals Scorecard, <u>April 2022 update</u> **Source: Federal Highway Administration, <u>About intersection safety</u>

POLLUTION

More than $28\ Million$

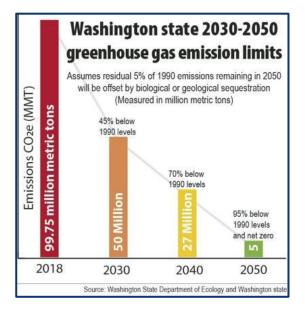
metric tons of CO₂ are emitted into the atmosphere each year due to signal delay^{*} About **3,300** people lose their lives each year at signalized intersections**

SAFETY

The Push for Carbon Reduction/Net Zero

How do we get there?

- Federal Carbon Reduction Program (\$6.5B over 5 years; WA-• \$21.1M/year)
- New Fuel Sources (water, wind, solar, etc.)
- Zero Emission Vehicles...


BUT

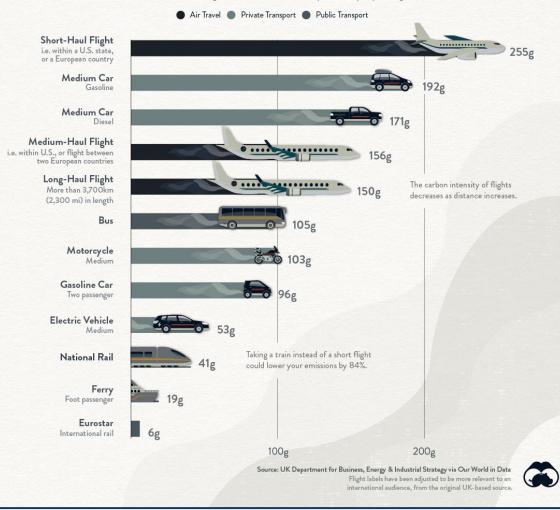
- Can the Grid/Infrastructure Handle Expanded EV Fleet?
- Per new ATRI study: •
 - "...an all-electric U.S. vehicle fleet would use more than 40 *percent*." of country's present electricity generation
 - "...electrification of the U.S. vehicle fleet would require 6.3 to 34.9 years of current global production." of battery materials.

Washington's Green New Deal: Climate agenda generates many unanswered questions

By DON IENKINS Capital Press Dec 8, 2022 Updated Dec 8, 2022

"Less than 1% of the 250 million cars, SUVs and light-duty trucks on the road in the United States are electric.", Reuters, 2/7/22

ATRI Study Link: https://truckingresearch.org/2022/12/06/charging-infrastructure-challenges-for-the-u-s-electric-vehicle-fleet/


Δ

Typical Sources of Emissions

- Greenhouse Gas Emissions by Transportation Sector
 - 40% Cars
 - 34% Trucks
 - 11% Air
 - 11% Marine
 - 4% Railways

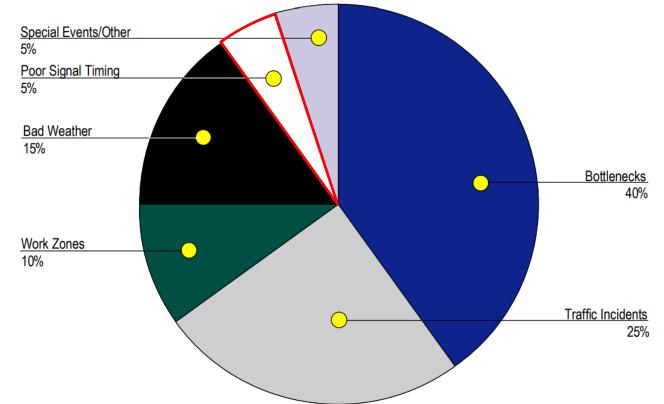
The Carbon Cost of Transportation

What's the lowest-carbon method of transportation? Here's the carbon footprint of travel for different vehicles, measured in grams of carbon dioxide equivalents per passenger-kilometer.

Source: https://www.visualcapitalist.com/comparing-the-carbon-footprint-of-transportation-options/

Ы

 \sim

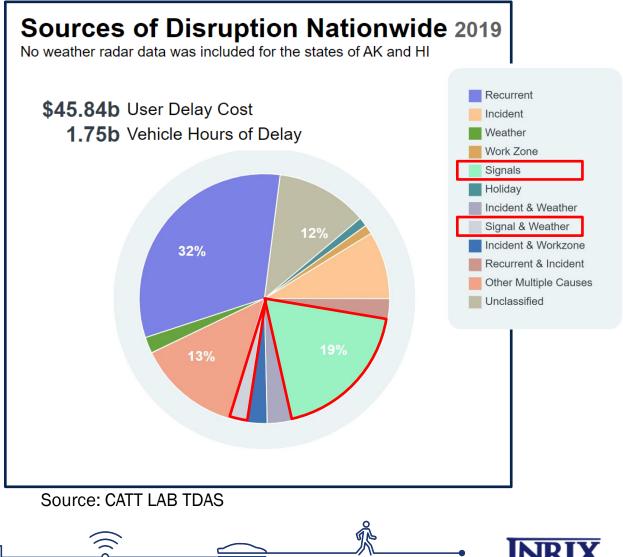

Source:

https://transportgeography.org/contents/chapter4/transportationand-environment/greenhouse-gas-emissions-transportation/

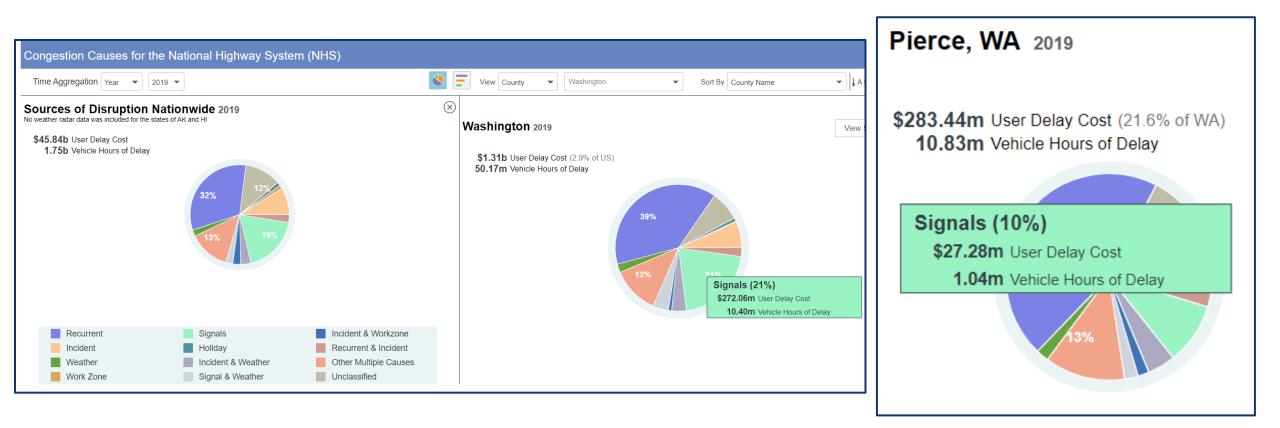
Signal Timing: How big is this opportunity?

National Contribution to Congestion (2004)

- 2004 FHWA has produced the composite estimate of congestion by source based on modeled data
- Estimated 5% of all congestion is a result of poor signal timing


Source: https://ops.fhwa.dot.gov/congestion_report/congestion_report_05.pdf

How big is this opportunity? (Revisited)


Transportation Disruption and Disaster Statistics (TDADS)

- 2019 CATT Lab and I-95 Corridor Coalition are revisiting the Congestion Pie Chart using measured Data
- Measurements revealed the cause of congestion as a result of signalized intersections may have been understated.
- Based on National Highway System
- Potentially 350 million vehicle hours of delay due to traffic signals

Pierce County, WA Example

NHS Roadways Only

ß

 $\overline{\frown}$

The Washington State Opportunity/Cost of Not Doing Anything...

Year 2022

10 Thousand

(and

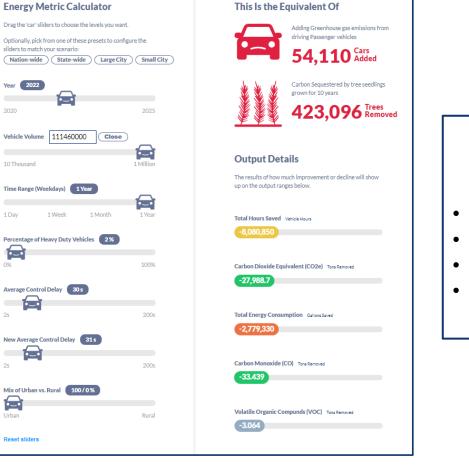
0%

25

Urban

Reset sliders

թ ļ٦


2020

Improve Signals by 1 Second

Energy Metric Calculator		This Is the Ec	quivalent Of
Drag the 'car' sliders to choose the levels you want			Removing Greenhouse gas emissions from
Optionally, pick from one of these presets to config	ure the	The second	driving Passenger vehicles
sliders to match your scenario: Nation-wide State-wide Large City	Small City		54,110 Cars Removed
(Nation-wide) (State-wide) (Large City	(Sman City		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Year 2022		the star set	Carbon Sequestered by tree seedlings
		* * *	grown for 10 years
2020	2025	**	423,096 Trees Added
		¥ ¥ ¥	· · ·
Vehicle Volume 111460000 Close	\sim		
10 Thousand	1 Million	Output Deta	ils
		The results of how mu	uch improvement or decline will show
Time Range (Weekdays) 1Year	_	up on the output rang	es below.
1 Day 1 Week 1 Month	1 Year	Total Hours Saved	/ehicle Hours
Percentage of Heavy Duty Vehicles 2%		8,080,850	
Percentage of Heavy Duty Vehicles 2%			
0%	100%	Carbon Dioxide Equi	valent (CO2e) Tons Removed
		27,988.7	
Average Control Delay 30 s			
	200s		
25	200s	Total Energy Consum	Iption Gallons Saved
New Average Control Delay 29 s		2,779,330	
25	200s	Carbon Monoxide (C	O) Tons Removed
		33.439	
Mix of Urban vs. Rural 100/0%			
Urban	Rural	Volatile Organic Con	npunds (VOC) Tons Removed
		3.064	
Reset sliders			
		Particulate Matter <	2.5 µm (PM2.5) Tons Removed
		0.965	

Assumptions: 5,573 signals with avg. ADT = 20,000

Degrade Signals by 1 Second

 $\overline{\sim}$

Net Annual Change (between the two options)

- Hours Saved: 16M Hours
- CO² Saved: 56K Tons
- Gas Saved: 5.6M Barrels
- CO Saved: 66M tons

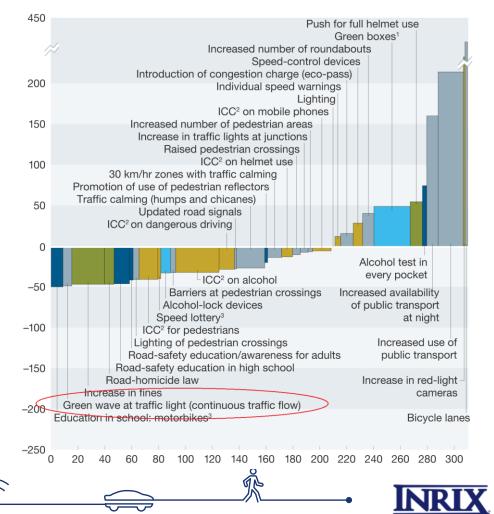
Th

INRIX Green Calculator: https://inrix.com/green-calculator/

9

Traffic Signals Use Case: Benefits of Good Signal Timing

- Signal optimization is one of best ways to improve safety.
 - >10% reduction crash for front end
 - >50% reduction of rear-end
 - 18% reduction in vehicle-to-pedestrian crashes


Vehicle and pedestrian safety impacts of signal timing optimization in a dense urban street network

Arash M. Roshandeh ^a, Zongzhi Li ^b $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\cong}$, Shengrui Zhang ^c, Herbert S. Levinson ^d, Xi Lu ^b

Slide Source: "Improving the State of Practice for all Signals" – presented at the 2022 ITS CA Annual Meeting, Eric Raamot, Chief Technology Officer, Econolite

 Cost of preventing casualties, € thousand
 Technology
 Infrastructure
 Regulation

 per fatality or severe injury avoided
 Enforcement
 Education

Probe Based SPMs Advantages: Scalability & Cost Effectiveness

11

Validation of using Probe Data for Signal Operations

- Crowd-source data is currently at 3-8% penetration rate.
- Offset optimization possible with even <1% penetration rate
- "Detector-Free Signal Offset Optimization with Limited Connected Vehicle Market Penetration: Proof-of-Concept Study", 2016 – Day, Bullock:
 - "The results show that over a 3-h window, successful offline optimization can be achieved with a CV penetration rate as low as 1%. Layering multiple days of data might allow offline optimization with penetration rates as low as 0.1%."
 - "In corridors with a high penetration rate of connected mobile devices, some private-sector probe data services may be on the cusp of providing the necessary data to facilitate detector-free optimization."
- Crowd-source data can be normalized via existent detectors.

Not an "either or" Solutior	N	lot an	"either	or"	So	lutio
-----------------------------	---	--------	---------	-----	----	-------

Purdue e-Pubs	
Lyles School of Civil Engineering Faculty Publications	Lyles School of Civil Engineering
2016	
Opportunities for Detector Optimization with Limited Market Penetration: A Proc	r-Free Signal Offset l Connected Vehicle of-of-Concept Study
Christopher M. Day <i>Purdue University,</i> cmday@purdue.edu	
Darcy M. Bullock Purdue, darcy@purdue.edu	
Follow this and additional works at: http://docs.lib.j	purdue.edu/civeng
Part of the <u>Civil Engineering Commons</u>	
Day, Christopher M. and Bullock, Darcy M., 'Opportunities for Detec Vehicle Market Penetration: A Proof-of-Concept Study" (2016). Lyles http://docs.lib.purdue.edu/civeng/26	
Day, Christopher M. and Bullock, Darcy M., "Opportunities for Detec Vehicle Market Penetration: A Proof-of-Concept Study" (2016). Lyles	School of Civil Engineering Faculty Publications. Paper 26.

How Long Do We Have to Collect Data to Draw a Meaningful Conclusion?

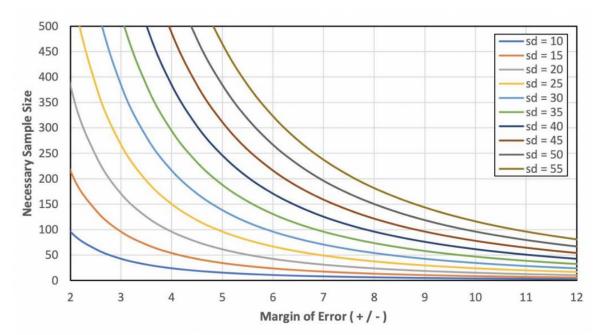
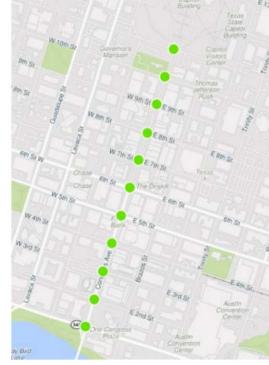



Figure 12. Sample size necessary for certain margins of error given the standard Figure 12. 11 intersections on Congress Avenue in Downtown Austin, TX

	W	/estbou	nd	N	orthbou	ind	E	astbour	nd	Southbound		
Intersection (1 day)	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Congress Avenue & West Cesar Chavez Street	24	44	10	10	34	10	8	68	X	0	48	9
Congress Avenue & West 2nd Street	0	0	0	5	40	5	0	0	0	0	56	0
Congress Avenue & East 3rd Street	0	0	0	0	37	0	0	0	0	0	54	0
Congress Avenue & East 4th Street	0	0	0	0	32	0	0	5	0	0	44	0
West 5th Street & Congress Avenue	X	\bowtie	\times	\times	32	6	5	58	. 7	0	42	\times
Congress Avenue & West 6th Street	13	44	5	10	30	\times	\times	\times	\times	\times	31	0
Congress Avenue & East 7th Street	\times	\ge	\times	\times	25	10	0	32	0	6	32	\times
Congress Avenue & West 8th Street	9	13	0	0	22	\times	\times	\times	\times	\times	29	0
Congress Avenue & East 9th Street	\times	\times	\times	X	22	0	0	0	0	0	25	\times
Congress Avenue & West 10th Street	11	8	0	0	19	\times	\times	\times	\times	\times	14	0
West 11th Street & Congress Avenue	6	20	\times	10	\times	10	\times	21	8	\times	\sim	\times

Table 1. PM Peak Observed Counts on Congress Avenue (1 day - April 7, 2021)

	N N	Westbound			Northbound			Eastbound			uthbou	und
Intersection (1 week)	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Congress Avenue & West Cesar Chavez Street	108	242	23	48	197	77	39	308	\times	24	216	36
Congress Avenue & West 2nd Street	12	11	9	17	208	27	9	14	7	10	240	8
Congress Avenue & East 3rd Street	5	8	0	7	202	22	5	16	11	5	235	14
Congress Avenue & East 4th Street	13	0	8	0	189	17	10	17	14	5	210	5
West 5th Street & Congress Avenue	\times	\bowtie	\bowtie	\times	179	38	41	233	26	12	195	\succ
Congress Avenue & West 6th Street	55	232	23	60	163	\times	\times	\bowtie	\times	\times	148	20
Congress Avenue & East 7th Street	\times	\times	\times	\times	119	64	10	153	15	34	154	\times
Congress Avenue & West 8th Street	54	59	8	19	105	\times	\times	\bowtie	\times	\times	137	6
Congress Avenue & East 9th Street	\times	\bowtie	\ge	X	94	14	9	15	28	8	107	\ge
Congress Avenue & West 10th Street	33	36	0	15	90	\times	\times	\times	\times	\times	67	0
West 11th Street & Congress Avenue	30	81	\times	35	\boxtimes	59	\times	78	31	\times	\times	\times

Table 2. PM Peak Observed Counts on Congress Avenue (1 week - April 5 - 9, 2021)

	N	/estbou	ind	No	orthbou	Ind	E	astbour	d	So	uthbou	ind
Intersection (1 month)	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Congress Avenue & West Cesar Chavez Street	457	1123	115	236	837	358	144	1392	\times	113	840	176
Congress Avenue & West 2nd Street	57	53	56	59	910	99	38	100	49	46	929	48
Congress Avenue & East 3rd Street	14	18	10	31	885	94	33	80	43	34	934	44
Congress Avenue & East 4th Street	51	20	27	42	833	70	34	69	61	17	821	58
West 5th Street & Congress Avenue	\times	\boxtimes	\times	\times	788	146	157	1102	170	66	734	\times
Congress Avenue & West 6th Street	226	1079	123	287	680	\times	\times	\times	\times	\times	574	84
Congress Avenue & East 7th Street	\times	\bowtie	\times	\bowtie	470	313	37	624	79	119	560	\times
Congress Avenue & West 8th Street	207	251	34	50	441	\times	\times	\times	\times	\times	479	14
Congress Avenue & East 9th Street	\times	\times	\times	\times	407	57	32	79	100	40	383	\times
Congress Avenue & West 10th Street	142	146	9	48	394	\times	×	X	\times	\times	228	7
West 11th Street & Congress Avenue	130	319	\sim	169	\times	250	X	337	90	X	\sim	X

Table 3. PM Peak Observed Counts on Congress Avenue (1 month – April 2021)

INRIX I INTELLIGENCE THAT MOVES THE WORLD

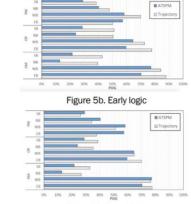
King Co., WA: 2,261 Signals, average daily crossings/intersection = 294

Opportunities for Detector-Free Signal Offset Optimization with Limited Connected Vehicle Market Penetration: A Proof-of-Concept Study

Christopher M. Day and Darcy M. Bullock

INRIX Signal Analytics Calibration with ATSPMs

Calibration Metrics Inbound Length Outbound Length Stop Speed Stop Duration


INRIX Signal Analytics Data Validation & Metrics FAQ

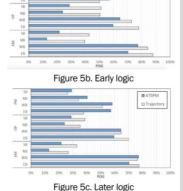


Figure 5. POG by approach and time of day with logic statements

Figure 5a. 4100 S @ 2700 W

383 Vend (2) North Tampin - SK477125 y 19. 2000 12:00 AM. Thursday, 7 elemeny 20. 2020 12:00 A

Figure 10a. Purdue split failure diagram (pre-covid)

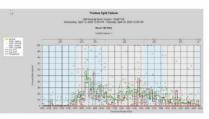


Figure 10c. Purdue split failure diagram (during-covid)

Trajectory Split Fail vs. Controller/Sensor Split Fail

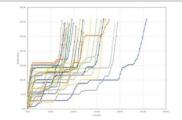


Figure 10b. Corresponding trajectory data (>1 stop)

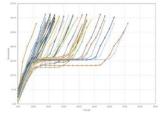


Figure 10d. Corresponding trajectory data (>0 stops)

Figure 6a. 3500 S @ 3200 W

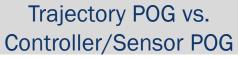


Figure 6. POG comparison on a single approach using a PCD

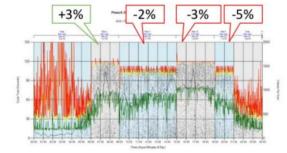


Figure 6b. Purdue Coordination Diagram

Signal Analytics The Fundamentals

High Frequency Waypoint Data

The Data: 3 to 5 second frequency CV GPS points snapped to OSM using the INRIX trips engine

The Metrics: CV GPS points are used to determine the travel time of a vehicle moving through an intersection.

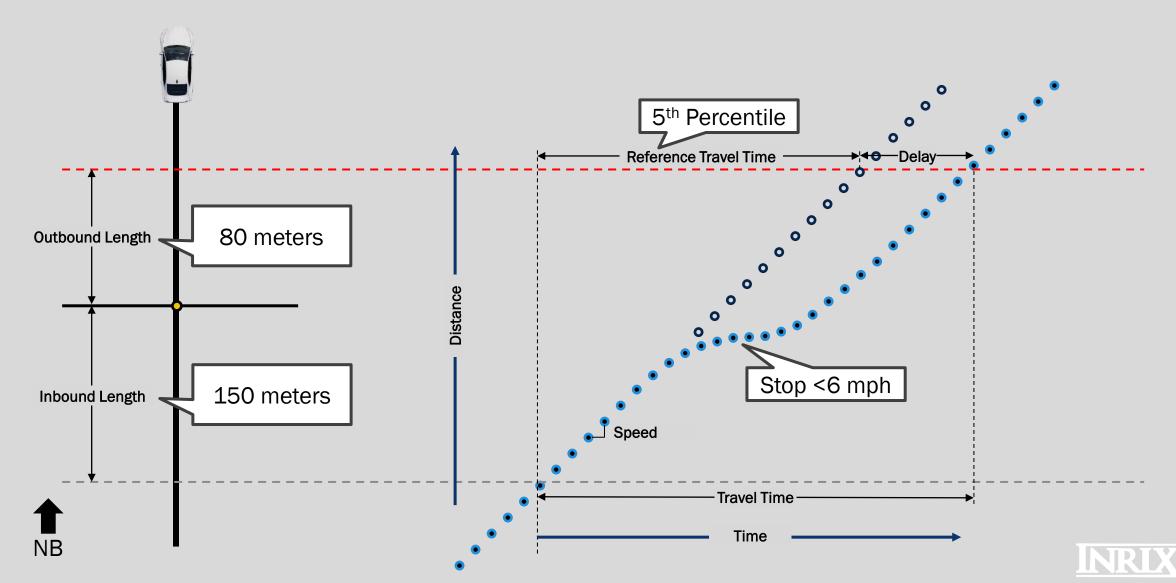
Other vehicle attributes include turning movement, vehicle stop, approach speed, or vehicle split failure 3 to 5 second frequency CV GPS points snapped to OSM using the INRIX trips engine

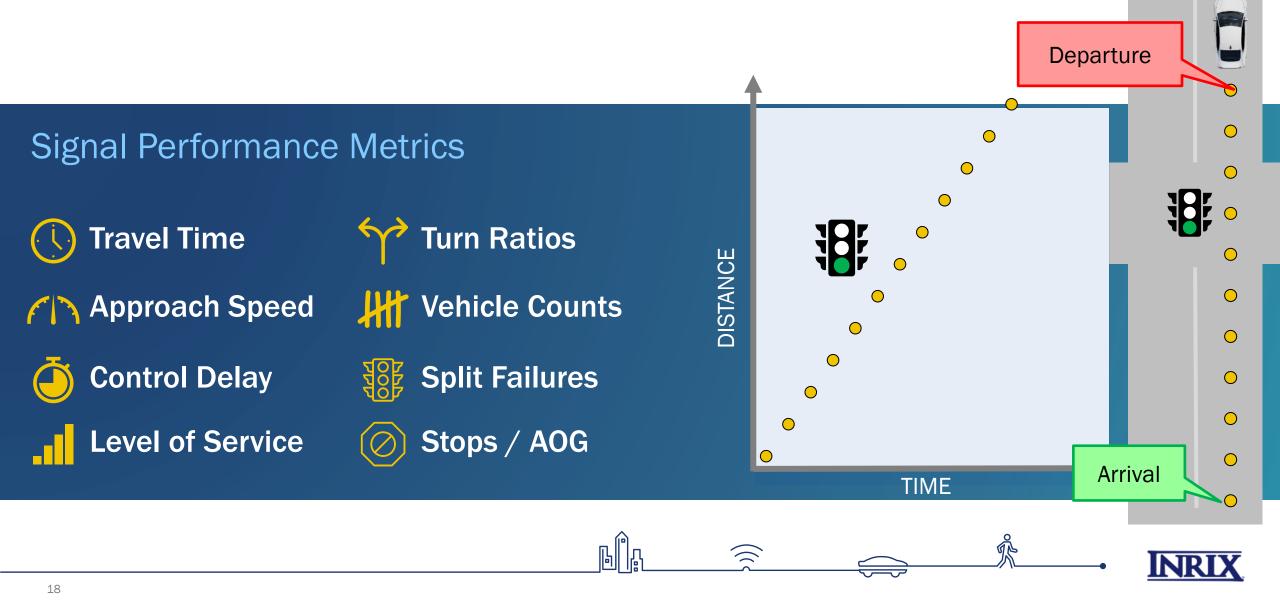
The Tools: Aggregate the metrics by intersection. Report summary metrics over various time periods

Data Directly from Vehicles

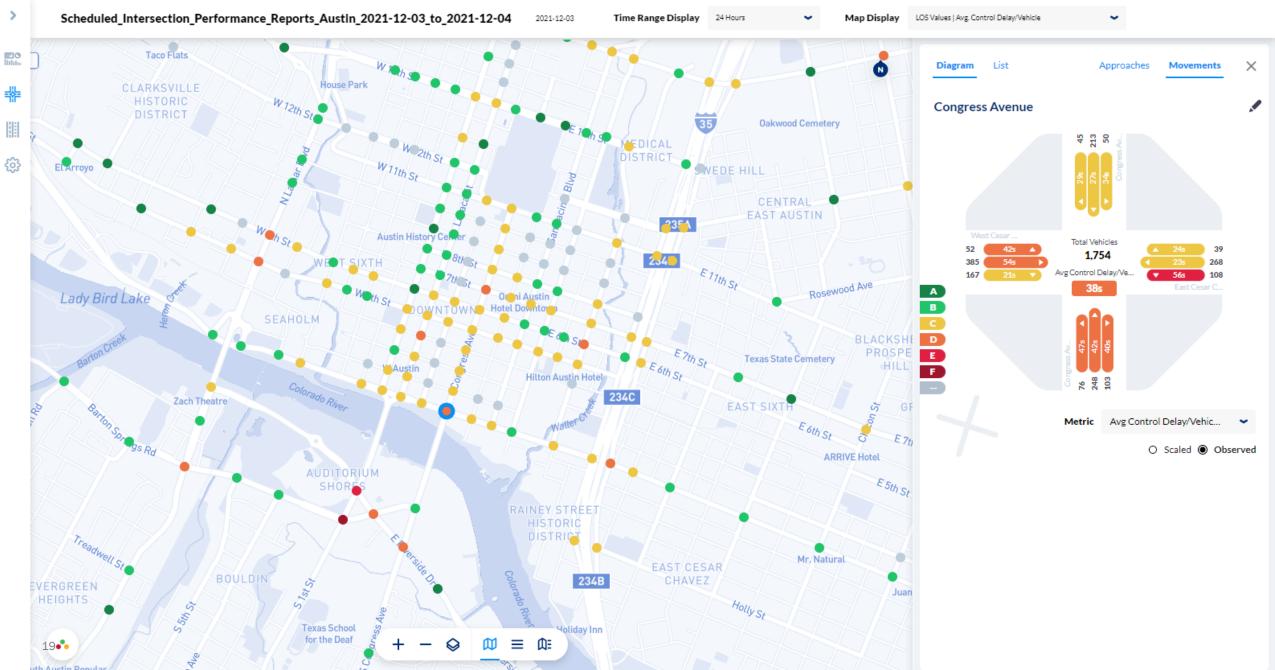
High Frequency Waypoint Data

Connected Vehicle Data Data collected from GPS devices built into the vehicle

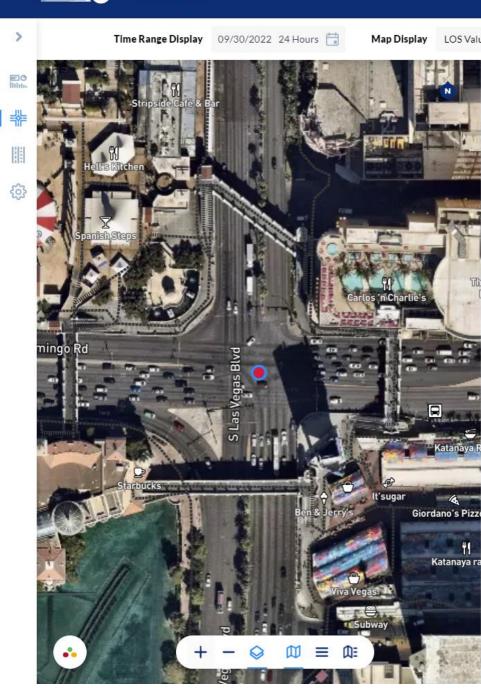

High Frequency Waypoints Waypoints collected every 3 to 5 seconds are used

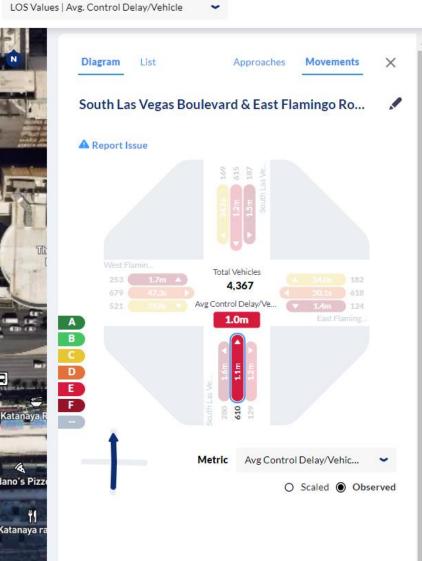

No Infrastructure Required No connection to detectors or the signal cabinet is required

Developing the Metrics

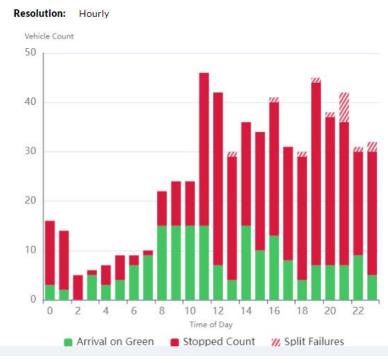


Intersection, Approach and Movement Level Metrics





:::



INRIX Q Signal Analytics

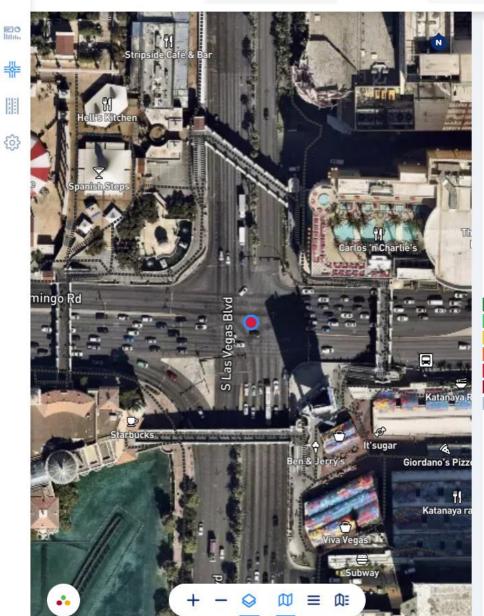
Count Stats T	ime Stats	Trajectory Plot		
Percent on Gree 30.98 %	en VS	4wk Average 30.32 %	Change + 2.17%	
Split Failures 14	VS	4wk Average 29	Change - 15	
Vehicle Count	VS	4wk Average 685	Change - 75	
Stopped Count 421	VS	4wk Average 478	Change - 57	

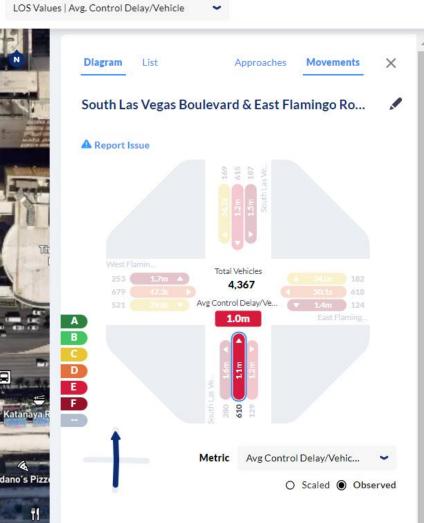
INRIX 10 **Signal Analytics**

>

EC

*

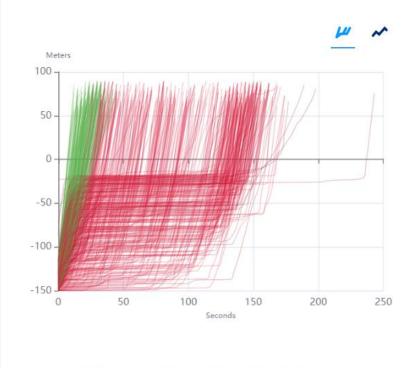

Time Range Display 09/30/2022 24 Hours


Map Display

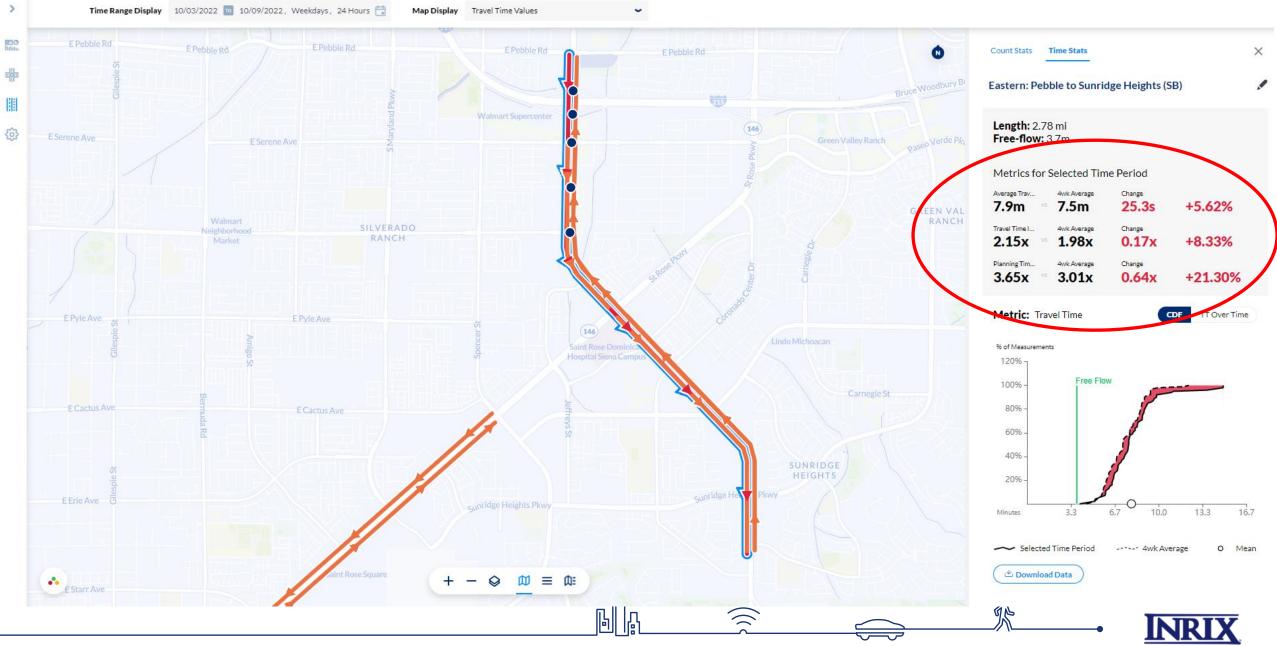
A

E

F


Count Stats Time Stats **Trajectory Plot** Through Count 4wk Average Change 189 206 - 8.36% VS. Stopped Count 4wk Average Change 421 478 - 12.00% VS Split Failures 4wk Average Change 14 29 - 51.70% VS.

?


RD

:::

×

🔽 No Stop 🛛 Single Stop 🔽 Split Failure

Intersection Analysis

?

	Ranked intersection movements for 90 i	intersectio	ns from No	ovember 01, 2021 th	rough November 30), 2021 (E	very Monday, Tues	day, Wednesday, an	d Thursday) from 6	AM to 10 AM	Filter	Display Options 🛛 🗮 💋 📋
Rank	Intersection	Approach	Movement	Vehicle Count: T 🏮	Vehicle Count: S 🕦	POG 🌖	Split Failure: 🕕 🔻	Travel Time: Avg 🕕	Travel Time: Ma 🏮	Approach Speed ()	Control Delay: A ()	Control Delay: M 🕕
1	San Antonio Street & West Cesar Chavez Street	Eastbound	Through	2879	1589	45%	113	49	367	27	з	4 352
2	East Cesar Chavez Street & North Interstate 35	Eastbound	Through	1115	488	56%	20	45	196	27	2	3 179
3	East 5th Street & Brazos Street	Northbound	Through	83	51	39%	17	50	105	23	2	84
4	South 1st Street & West Cesar Chavez Street	Westbound	Through	1160	606	48%	14	51	301	24	3	289
5	Congress Avenue & East Cesar Chavez Street	Westbound	Through	905	214	78%	11	37	354	25	2	1 338
6	Brazos Street & East 7th Street	Eastbound	Through	538	156	71%	11	34	332	25	1	7 315
7	Colorado Street & West Cesar Chavez Street	Westbound	Through	1202	512	57%	10	52	362	24	з	7 347
8	West 4th Street & Guadalupe Street	Westbound	Left	55	37	33%	10	68	132	20	4	7 111
9	East 2nd Street & San Jacinto Boulevard	Southbound	Through	133	88	34%	8	58	269	22	з	4 245
10	West 5th Street & Rio Grande Street	Northbound	Through	27	23	15%	8	109	294	21	8	3 268
11	Congress Avenue & East Cesar Chavez Street	Eastbound	Through	1440	776	46%	7	43	136	27	3	1 124
12	South 1st Street & West Cesar Chavez Street	Eastbound	Left	509	332	35%	7	58	246	32	4	0 228

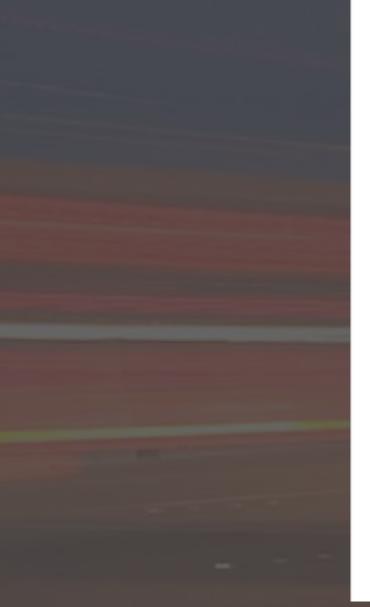
Use Case: RTCSNV, Adaptive Signal System Evaluation

Adaptive Systems & How Performance Measures Can Help

September 27, 2022

John R. Peñuelas, Jr., P.E. (NV)

Director of Engineering Services Regional Transportation Commission of Southern Nevada



Weighted Vehicle Delay

	Vehicle Del	ay (sec)		
Intersection	ASC	TBC	Delta	Estimated Avg Daily Intersection Volume
Pebble	29.3	36.5	7.2	42,788
Serene	33.7	34.8	1.1	73,605
Silverado Ranch	22.8	25.2	2.4	68,789
St Rose	32.3	32.9	0.6	97,974
Horizon Ridge	38.7	41.4	2.7	62,226
Sunridge Heights	33.2	35.5	2.3	58,407
		Total	16.3	403,788

INRIX Green Signals Calculator

Energy Metric Calculator

Drag the 'car' sliders to choose the levels you want. Optionally, pick from one of these presets to configure the sliders to match your scenario: Nation-wide) (State-wide Large City Small City Year 2022 -----2025 Vehicle Volume 404000 Close 6-0 1 Million 10 Thousand Time Range (Weekdays) 1Year ----1 Day 1 Week 1 Year Percentage of Heavy Duty Vehicles 18% 1 0% 100% Average Control Delay 36.3s ---2s 200s New Average Control Delay 20.4s 25 200s Mix of Urban vs. Rural 100/0% 1 Urban Rural Reset sliders

Output Details

The results of how much improvement or decline will show up on the output ranges below

Total Hours Saved Vehicle Hours

Carbon Dioxide Equivalent (CO2e) Tons Removed

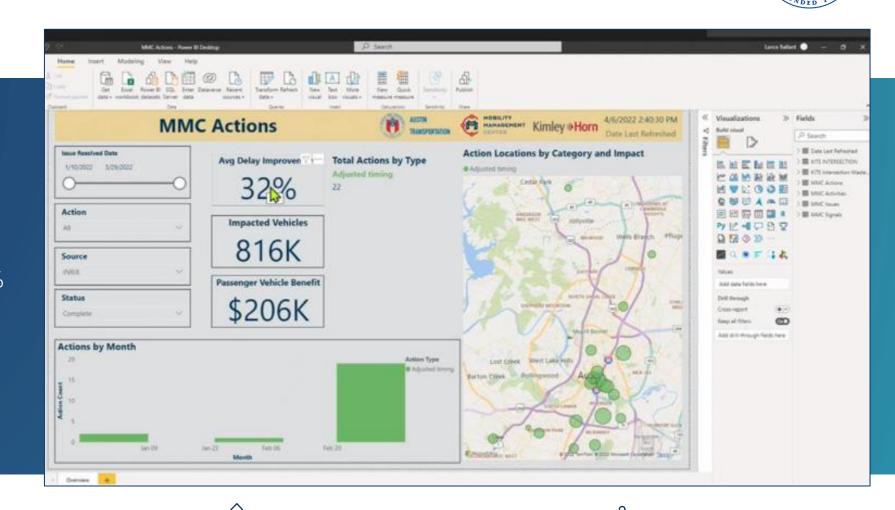
Total Energy Consumption Gallons Saved

Carbon Monoxide (CO) Tons Removed

Volatile Organic Compunds (VOC) Tons Removed

Particulate Matter < 2.5 µm (PM2.5) Tons Removed

Annualized "Green" Statistics

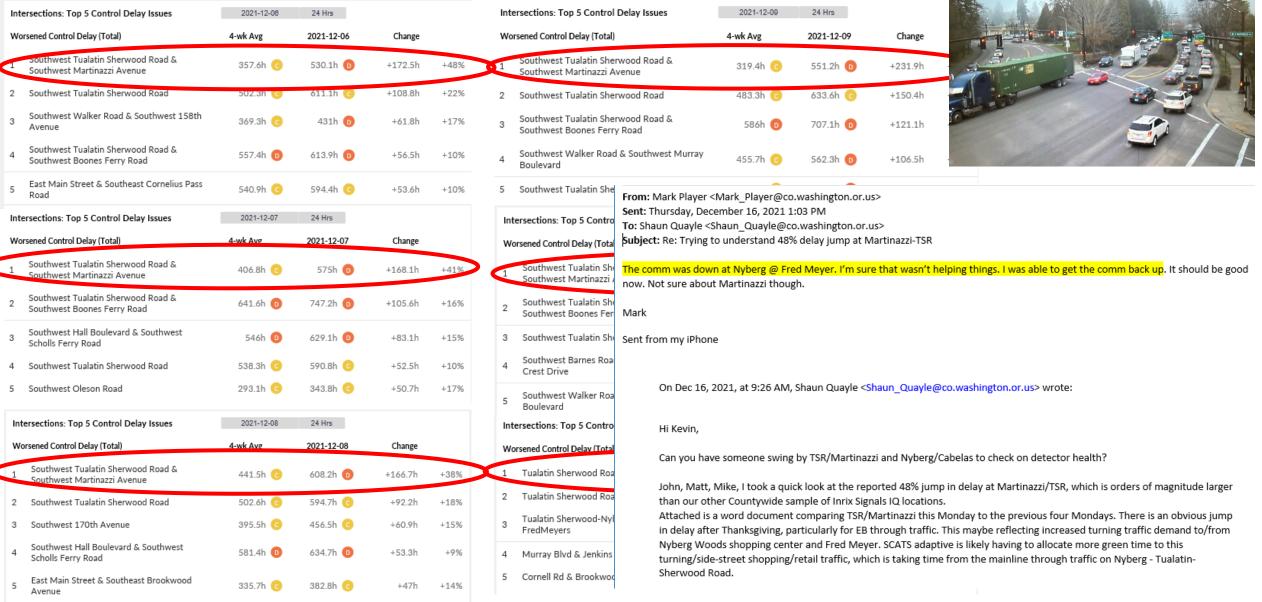

- 3,110 Vehicles Removed
- 24,315 Trees Added
- 465,711 Hours Saved
- 1,608 Tons of CO2e Removed
- 159,740 Gallons Saved
- \$10.3 M Total Savings
 (Time/Fuel)
- 32 Days to Recover Cost of Project

Use Case: City of Austin Summary Program Benefits Kimley»Horn

Cost Benefit – 22 Intersections

Approximately 90 Days:

- Avg Delay Improvement = 32%
- # Vehicles 816k
- ♦ Cost benefit ~\$206k


 \sim

비

Use Case- Washington County - Active Signal Management

Leveraged Daily Emails to Investigate Recurring Issues

Use Case- Washington County - Active Signal Management

Leveraged Daily Emails to Investigate Recurring Issues

	Inte	ersections: Top 5 Control Delay Issues	2022-01-08	24 Hrs			
	Wo	rsened Control Delay (Total)	4-wk Avg	2022-01-08	Change		
<	1	Scholls Ferry Rd & 125th - North Dakota St	197.8h 🔳	298.4h c	+100.6h	+51%	
	2	Scholls Ferry Rd & Murray Blvd	388.2h 📀	462h 💿	+73.7h	+19%	
	3	Cornell Rd & 25th Ave	240.8h 📵	312.5h 📀	+71.7h	+30%	
	4	Tualatin Sherwood Road & Boones Ferry Road	309.3h 📀	377.4h c	+68.2h	+22%	
	5	Scholls Ferry Road & Nimbus Avenue	103.6h 🔺	157.5h 🔳	+53.9h	+52%	

Int	ersections: Top 5 Control Delay Issues	2022-01-09	24 Hrs		
Wo	rsened Control Delay (Total)	4-wk Avg	2022-01-09	Change	
1	Scholls Ferry Rd & 125th - North Dakota St	161.6h 🔳	256.8h 📀	+95.2h	+59%
2	Tualatin Sherwood Road & Boones Ferry Road	222.0h 🕓	263.5h 😳	+40.9h	+18%
3	Baseline Rd & 185th Ave	304.4h c	332.7h 📀	+28.3h	+9%
4	Scholls Ferry Road & 121st Avenue	125.3h 🔳	146.4h 🕒	+21h	+17%
5	Scholls Ferry Road & Roy Rogers Road	94.6h 📵	115.2h 🔳	+20.6h	+22%

From: Mark Leavitt <mleavitt@beavertonoregon.gov> Sent: Thursday, January 13, 2022 12:27 PM To: Shaun Quayle <Shaun_Quayle@co.washington.or.us> Subject: [EXTERNAL] RE: Ped button stuck on Murray-Allen

Shaun,

Scholls @ 125th we discovered a hung up Loop card. It was reset. Now Murray @ Allen we didn't find any issues. No calls on the controller and the DC isolator card had no recall, and no button was stuck. Are you still seeing any issues there?

Continuously monitor every movement in your network without investing in equipment

Thank you! Questions.

Gary Carlin, Director Public Sector Services

Gary.carlin@inrix.com

inrix.com/signals/

Identify performance issues without ever leaving your desk

Take proactive actions based on deep analysis and reliable performance trends

Make cities more livable with better traffic flow, improved air quality, and safer intersections

