EVSE IS ITS!!!

ITS WASHINGTON CONFERENCE

Tacoma, Washington November 7, 2024

MIKE USEN, AICP Principal & National Director of Electromobility mike.usen@dksassociates.com

SHAPING A SMARTER TRANSPORTATION EXPERIENCE[™] DKSASSOCIATES.COM

AN EMPLOYEE-OWNED COMPANY

AGENDA

1 / INTRODUCTION

DKS Electromobility

2 / EVSE 101: EV Charging Basics

- EV Charging Levels
- EV Charging Standards
- EV Charging Speed

3 / EVSE 201: Latest Trends in EV Charging

- Managed EV Charging
- New Charging Standards
- Load Management
- Bidirectional Charging & Vehicle to Grid Integration
- Curbside/right-of-way Charging
- Heavy-Duty Vehicle Electrification
- Battery-Integrated & Mobile Charging
- Automated Charging Technologies

INTRODUCTION

DKS' ELECTROMOBILITY SERVICES

Fleet Electrification

Comprehensive vehicle and charging infrastructure planning to convert light, medium, and heavy-duty vehicles to electric propulsion.

Transit Electrification

Bus electrification planning including battery charging infrastructure alternatives, electrical substation feasibility, technology planning, operations and environmental review.

EV Charging Infrastructure Planning

Strategic selection of sites for fleet, workplace, residential, public right-of-way, destination, and shared mobility EV charging based on travel demand expertise.

EV Charging Infrastructure Installation Design

Infrastructure design for Level 2, DC Fast, and high-power chargers including cost estimation, construction documentation, coordination with local utilities and EV charging networks.

DKS ELECTROMOBILITY EXPERIENCE IN WASHINGTON & CALIFORNIA

EVSE 101: EV Charging Basics

EV CHARGING LEVELS

KNOW YOUR EV CHARGING STATIONS

AC Level One

VOLTAGE 120v 1-Phase AC

AMPS 12–16 Amps

CHARGING LOADS 1.4 to 1.9 KW

CHARGE TIME FOR VEHICLE 3–5 Miles of Range Per Hour

VOLTAGE 208V or 240V 1-Phase AC

AMPS 12-80 Amps (Typ. 32 Amps)

CHARGING LOADS 2.5 to 19.2 kW (Typ. 7 kW)

CHARGE TIME FOR VEHICLE 10–20 Miles of Range Per Hour

VOLTAGE 208V or 480V 3-Phase AC

AMPS <125 Amps (Typ. 60 Amps)

CHARGING LOADS
<90 kW (Typ. 50 kW)</pre>

CHARGE TIME FOR VEHICLE 80% Charge in 20–30 Minutes

EV CHARGING STANDARDS

NEMA 5-15, NEMA 5-20

CCS Combo

DKS

Tesla Supercharger

EV CHARGING SPEEDS

EV Battery Charging Times				Time Required for Optimum (80%) Battery Charged Sased on Charger Loads (h)												
EV Vehicles	Battery Capacity (kW-h)	Acceptance Rate in kW		Level 1 Chargers		Level 2 Chargers						DCFC Chargers				
		AC	DC	1.4 ¹	1.9 ¹	3.6	6.6	7.2	9.6	12	19.2	50	100	150	175	250
Nissan Leaf	62	6.6	150	35.4	26.1	13.8	7.5	7.5	7.5	7.5	7.5	1.0	0.5	0.3	N/A	N/A
Chevrolet Bolt	66	7.2	50	37.8	27.8	14.7	10.9	7.4	7.4	7.4	7.4	1.1	N/A	N/A	N/A	N/A
Lordstown Endurance	109	11	150	62.3	45.9	24.2	13.2	12.1	9.1	9.1	9.1	1.8	0.9	0.6	N/A	N/A
Tesla Model X/S	100	11.5-17.5	250	57.1	42.1	22.2	12.1	11.1	8.3	4.7	4.7	1.6	0.8	0.5	0.5	0.3
Tesla Model Y	75	11.5	250	42.9	31.6	16.7	9.1	8.3	6.3	5.2	5.2	1.2	0.6	0.4	0.3	0.2
Ford Mach-E	98.8	10.5	150	56.5	41.6	22.0	12.0	11.0	8.2	7.5	7.5	1.6	0.8	0.5 ²	N/A	N/A
Ford E-Transit	67	11.3	100	38.3	28.3	14.9	8.2	7.5	5.6	4.7	4.7	1.1	0.6	N/A	N/A	N/A
Nissan Ariya	65	7.2	130	37.2	27.4	14.4	7.9	7.2	7.2	7.2	7.2	1.0	0.5	0.4	N/A	N/A
Volkswagen ID4	62	11	150	35.4	26.1	13.8	7.5	6.9	5.2	4.5	4.5	1.0	0.5	0.3	N/A	N/A
Ford F-150 Lightning	115	11.3	150	66.0	48.4	25.6	13.9	12.8	9.6	8.1	8.1	1.8	0.9	0.6	N/A	N/A
Hyundai Ioniq 5	58	10.9	350	33.0	24.4	12.9	7.0	6.4	4.8	4.3	4.3	0.9	0.5	0.3	0.3	0.2

1: Level 1 chargers include 16A (1.4kW) and 20A (1.9kW) breaker ampacity.

2: The base Select Ford Mustang Mach-E modal is capable of up to 115 kW of fast-charging capability, while all other Mustang Mach-E models will go to 150 kW.

00.0 = kW

EV CHARGING SPEED VS. COST

EVSE 201: Latest Trends in EV Charging

SMART CHARGER FUNCTIONS:

- **Remote monitoring**: Drivers can remotely monitor the charge state of their EV.
- **EV battery performance**: Smart chargers can help maintain EV battery performance.
- **Schedule charging**: Drivers can schedule charging times to take advantage of lower electricity rates or to fit their lifestyle.
- **Energy load management**: Smart chargers can help balance the energy demand in the grid.
- **Grid stability**: Smart chargers can help improve grid stability.
- Data, payment, Load Management...

SMART CHARGER FUNCTIONS:

• **Data Collection**: Such charging equipment is capable of recording, tracking, and analyzing charging data including:

Number of unique charging events
 Average duration of each charging event
 kilowatt hours delivered by each charger
 Which vehicle was charged
 Downtime at each charger, and more.

SMART CHARGER FUNCTIONS:

• **Payment Collection:** Payment initiation options, including:

RFID or QR code
Credit/debit card tap or swipe
Apple Pay
Google Wallet
smartphone app

SMART CHARGER FUNCTIONS:

- Data Connectivity Options:
 - Ethernet: Ideal mode of Internet, especially for DCFC requiring utility demand response.
 - □ 4G or if possible, 5G wireless communication: Ideal if no Ethernet cable; most DCFCs and some L2s have SIM-card readers to allow direct connection with a cellular network
 - □ **Wi-Fi**: If no local Wi-Fi, then a cellular Wi-Fi router can be used.
 - Bluetooth: If Internet connectivity is not feasible, some EVSE can be authorized via a nearby Bluetooth device that has Internet (e.g. smartphone)
 - NIFT: (No Internet For Things) technology using Near-Field (NFC) Communications (Xeal)

NEW CHARGING STANDARDS

DC+

DC-

Comm

Megawatt Charging Standard (MCS)

NACS/J3400

Image sources:

https://www.staubli.com/

https://thedriven.io/2022/06/27/new-standard-should-prevent-plug-war-for-megawatt-scale-electric-truck-charging/

LOAD MANAGEMENT

Image sources: https://www.gridx.ai/blog/dynamic-load-management-ev-c harging-regulations-uk

LOAD MANAGEMENT

DEPOT LOAD PROFILE 💙

Microgrid Labs

DKS

BIDIRECTIONAL CHARGING & VEHICLE TO GRID INTEGRATION (VGI)

Image sources: https://toka.energy/en/blog/vehicle-to-grid/

CURBSIDE/RIGHT-OF-WAY CHARGING

HEAVY-DUTY VEHICLE ELECTRIFICATION

Tesla

Volvo

Kenworth

Lion Electric

HEAVY-DUTY VEHICLE ELECTRIFICATION

BATTERY-INTEGRATED & MOBILE CHARGING

Figure 1: Volume-weighted average lithium-ion battery pack and cell price split, 2013-2023

Source: BloombergNEF. Historical prices have been updated to reflect real 2023 dollars. Weighted average survey value includes 303 data points from passenger cars, buses, commercial vehicles, and stationary storage.

The changing EV battery landscape

Source: International Energy Agency • Amrita Dasgupta, IEA/STO/STO/EDO/DSU Chart by Casey Crownhart, MIT Technology Review

Image sources: https://www.evpowerpods.com/

UKS

BATTERY-INTEGRATED & MOBILE CHARGING

Mobile Charging Pod

Completely Mobile And Self-Contained, Grid Independent, DC Fast Charging Platform Designed For Travel.

Deployable Charging Pod

Rapidly Deployable And Self-Contained, Grid Independent, DC Fast Charging Platform Designed For Longer Deployment.

Truck Mounted Pod

Truck Mounted And Self-Contained, Grid Independent, DC Fast Charging Platform Designed For Highly Mobile Fleets.

Image sources: https://www.evpowerpods.com/

DKS

AUTOMATED CHARGING TECHNOLOGY

Inductive (Wireless) Charging

Image sources: https://electreon.com/technology https://witricity.com/ PluglessPower.com https://www.inductev.com/

AUTOMATED CHARGING TECHNOLOGY

Robotic Charging

Image sources: https://www.rocsys.com/ https://www.staubli.com/

AUTOMATED CHARGING TECHNOLOGY

Battery Swapping

EVSE IS ITS!!!

ITS WASHINGTON CONFERENCE

Tacoma, Washington November 7, 2024

QUESTIONS?

MIKE USEN, AICP Principal & National Director of Electromobility mike.usen@dksassociates.com

SHAPING A SMARTER TRANSPORTATION EXPERIENCE[™] DKSASSOCIATES.COM

AN EMPLOYEE-OWNED COMPANY